The Director General Sri Lanka Standards Institution No.17, Victoria Place, Elvitigala Mawatha, Colombo – 08, Sri Lanka.

APPLICATION FOR QUALIFICATION APPROVAL UNDER SLS 1373

I hereby apply for Qualification Approval under SLS 1373 with the Sri Lanka Standards Institution.

- 1. Name of the organization :
- 2. Postal address
- 3. Telephone No
- 4. Email address
- 5. Details of contact person
 - a. Name
 - b. Designation

:

:

- c. Telephone no :
- d. Email address :
- 6. Product details: (Please provide Base oil data, Prototype data and Oil data separately for each brand. Prototype data shall be submitted on official letterhead of the oil manufacturer or brand owner, signed by an authorized officer. Kindly note that all the information provided, shall be treated strictly confidential and will not be divulged to any other party.)

Brand name	SAE Viscosity grade

7. Declaration by the applicant

In order to ensure conformity of the above mentioned products, with SLS 1373: Specification for crankcase lubricating oils for internal combustion diesel engines, we agree to provide required information and pay applicable charges with applicable taxes prior to the grant of qualification approval.

In the event the qualification approval being suspended or cancelled, all relevant advertising material will be withdrawn with immediate effect.

Signature: Date: Name: Designation: Stamp of the Organization:

INFORMATION TO BE SUBMITTED TO OBTAIN QUALIFICATION APPROVAL

Following shall be submitted either on official letter head of the oil manufacturer or brand owner, signed by an authorized officer giving following particulars:

Full name Designation Official address Contact no. & email :

:

:

:

		BASE OIL INFORMATION				
1	Name of the base oil :					
2	API category of the base oil:					
		ROTOTYPE INFORMATION				
Nar	ne of the laboratory:					
	lress:					
1	erence to the sample tested:					
Dat			Т	4	14	
1		Requirement	1	est res	ult	
1	Conformity to Clause 5.4.					
2	Low temperature cranking viscosity, mPa.s					
3	Low temperature pumping viscosity, mPa.s					
4	Low shear rate kinematic viscosity, mm2/s at 100 °C					
5	High shear rate viscosity, 1					
6	High temperature	Copper increase, ppm				
7	corrosion bench	Lead increase, ppm				
8	test	Tin increase, ppm				
9		Copper corrosion rating				
10	_	Sequence I, mL				
11	Foam test	Sequence II, mL				
12		Sequence III, mL				
13 14	Shear stability	After shear viscosity SAE 10W-30				
14	-	After shear viscosity SAE 15W-40				
15	Volatility loss at 250 0 C	Noack (SAE 10W-30), % loss				
10	-	Noack (SAE 15W-40), % loss GCD (SAE 10W-30), % loss				
17	Volotility logg at 271 VC	GCD (SAE 10W-50), % loss GCD (SAE 15W-40), % loss				
10		GCD (SAE 13 W-40), 70 1088	1	2	3	
			Test	Tests	Tests	
19	Mack T-8E	Relative viscosity @ 4.8% soot				
20)	Viscosity increase @ 3.8% soot, cSt				
21		Liner wear, microns				
22	Mack T-9	Top ring weight loss, mg				
23		Increase in Lead level, ppm				
24		Rocker pad average weight loss				
25	Cummins M-11	normalized to 4.5 % soot, mg				
25		Oil filter delta pressure at EOT, kPa				
26		Average sludge rating, merits				
27	C (11 1D	Weighted total demerits, demerit				
28	- 1	Top groove carbon, s				
29		Top land carbon, %				

			Ref. QL		
30		Average oil consumption, %			
31		Final oil consumption, gm/hr			
32		Piston ring and liner scuffing, gm/hr			
33		Weighted total demerits, demerit			
34		Groove No. 1 (Top) fill, s			
35	Caterpillar 1K	Top land heavy carbon, %			
36	-	Oil consumption, (0-252) h, %			
37		Piston ring and liner scuffing, g/MJ			
38	Roller follower wear test	Pin wear, µm/mils			
39	Engine oil aeration test	Aeration, % volume			
40	Sequence IIIF	Viscosity increase at 60 hours, %			
41	Sulfated ash, %	· · · · · · · · · · · · · · · · · · ·			
42	Total base number, mg KO)H/g			
43		Barium, %			
44		Boron, %			
45		Calcium, %			
46		Copper, %			
47	Metallic Components	Magnesium, %			
48	1	Molybdenum, %			
49		Phosphorus, %			
50		Sulfur, %			
7 4		Zinc, %			
51					
51		OIL INFORMATION			
	me of the laboratory:				
Na	me of the laboratory: dress:				
Na Ad Ref	dress: ference to the sample tested:				
Na Ad	dress: erence to the sample tested: e :	OIL INFORMATION			
Na Ad Ref Da	dress: ference to the sample tested: te :	OIL INFORMATION Requirement	T	est resi	ult
Nat Add Ref Dat	dress: erence to the sample tested: te : Low temperature cranking	OIL INFORMATION Requirement sviscosity, mPa.s	T	est resi	ult
Na Ad Ref Da	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping	OIL INFORMATION Requirement s viscosity, mPa.s s viscosity, mPa.s	T	est resi	ult
Na Ad Ref Da 52 53 54	dress: cerence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mPa.s viscosity, mm2/s at 100 °C		est ress	ult
Na Add Ref Dat 52 53 54 55	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic High shear rate viscosity,	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mPa.s viscosity, mm2/s at 100 °C		est resi	ult
Na Ad Ref Da 52 53 54	dress: cerence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mPa.s viscosity, mm2/s at 100 ⁰ C		est rest	ult
Na Add Ref Dat 52 53 54 55	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic High shear rate viscosity, to Viscosity index Sulfated ash, %	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mPa.s viscosity, mm2/s at 100 °C mPa.s at 150 °C		est resi	ult
Nai Add Ref Data 52 53 54 55 56 57 58	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic High shear rate viscosity, to Viscosity index	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mPa.s viscosity, mm2/s at 100 °C mPa.s at 150 °C DH/g		est resi	ult
Nai Add Ref Dat 52 53 54 55 55 56 57	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic High shear rate viscosity, to Viscosity index Sulfated ash, %	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mPa.s viscosity, mm2/s at 100 °C mPa.s at 150 °C DH/g Barium, %		est rest	ult
Nai Ad Ref Dai 52 53 54 55 56 57 58	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic High shear rate viscosity, to Viscosity index Sulfated ash, %	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mPa.s viscosity, mm2/s at 100 °C mPa.s at 150 °C DH/g		est rest	ult
Na Adi Ref 52 53 54 55 56 57 58 59	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic High shear rate viscosity, to Viscosity index Sulfated ash, %	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mPa.s viscosity, mm2/s at 100 °C mPa.s at 150 °C DH/g Barium, %		est resi	ult
Na Adu Ref 52 53 54 55 56 57 58 59 60	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic High shear rate viscosity, to Viscosity index Sulfated ash, %	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mPa.s viscosity, mm2/s at 100 °C mPa.s at 150 °C DH/g Barium, % Boron, %		est resi	ult
Na Ad Ref Dat 52 53 54 55 56 57 58 59 60 61	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic High shear rate viscosity, to Viscosity index Sulfated ash, %	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mPa.s viscosity, mm2/s at 100 °C mPa.s at 150 °C DH/g Barium, % Boron, % Calcium, %		est res	ult
Nai Adi Ref Dar 52 53 54 55 56 57 58 59 60 61 62	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic High shear rate viscosity, r Viscosity index Sulfated ash, % Total base number, mg KC	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mPa.s viscosity, mm2/s at 100 °C mPa.s at 150 °C DH/g Barium, % Boron, % Calcium, % Copper, %		est resi	ult
Na Adi Ref Data 52 53 54 55 56 57 58 59 60 61 62 63	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic High shear rate viscosity, r Viscosity index Sulfated ash, % Total base number, mg KC	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mPa.s viscosity, mm2/s at 100 °C mPa.s at 150 °C DH/g Barium, % Boron, % Calcium, % Copper, % Magnesium, %		est rest	ult
Na Ad Ref Dat 52 53 54 55 56 57 58 59 60 61 62 63 64	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic High shear rate viscosity, r Viscosity index Sulfated ash, % Total base number, mg KC	OIL INFORMATION Requirement g viscosity, mPa.s mPa.s at 100 °C DH/g Barium, % Boron, % Calcium, % Copper, % Magnesium, % Molybdenum, %		est resi	
Nai Adi Ref Dar 52 53 54 55 56 57 58 59 60 61 62 63 64 65	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic High shear rate viscosity, r Viscosity index Sulfated ash, % Total base number, mg KC	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mPa.s viscosity, mm2/s at 100 °C mPa.s at 150 °C DH/g Barium, % Boron, % Calcium, % Copper, % Magnesium, % Phosphorus, % Sulfur, %		est resi	ult
Nai Ad Ref Dar 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	dress: erence to the sample tested: te : Low temperature cranking Low temperature pumping Low shear rate kinematic High shear rate viscosity, r Viscosity index Sulfated ash, % Total base number, mg KC	OIL INFORMATION Requirement g viscosity, mPa.s g viscosity, mP2/s at 100 °C mPa.s at 150 °C DH/g Barium, % Boron, % Calcium, % Copper, % Magnesium, % Phosphorus, % Sulfur, % Zinc, %		est rest	

